Customization enhances the capabilities of fluorescence microscopy, optimizing the fluorescence microscope for high-resolution imaging.
Customization enhances the capabilities of fluorescence microscopy, optimizing the fluorescence microscope for high-resolution imaging.
Optical Coherence Tomography (OCT) provides detailed imaging of blood vessels, facilitating diagnosis and treatment of AMD.
OCT, a non-contact method, is crucial for Non-Destructive Testing, ensuring thorough inspections without compromising material integrity.
Optical Coherence Tomography (OCT) revolutionizes medical diagnostics with its precise 3D imaging and high spatial resolution capabilities.
Key Takeaways Infrared lenses (IR lenses), through opto-mechanical design, align components for high-performance optics and IR applications. IR lenses capture and focus radiation in various spectra. Used in medical, scientific, surveillance, and defense fields, they enable thermal imaging and spectroscopy, driving technological progress. Opto-Mechanical Design for High-Performance Optics In order to ensure the seamless functioning of a high-performance optical system, it is essential to establish a foundation comprising suitable mechanical components that are well-maintained and accurately aligned. At Avantier, we have over 20 years of experience in opto-mechanical design. Our mechanical engineers play a key role in your projects by offering optimized and cost-effective designs. Except for optical software – Zemax, which we have talked about a little bit in other articles, our mechanical engineers will use software like AutoCAD, SolidWorks to work on the mechanical parts. The opto-mechanical design plays a crucial role in the overall process as it provides crucial support to the optics and maintains their performance. During this stage, we carefully integrate all interfaces and consider environmental factors such as vacuum conditions, extreme temperatures, vibrations, and more. By adhering to the specified requirements, we guarantee the system’s technical performance is upheld. Exploring the Applications and Features of Infrared Lenses Infrared lenses (IR lenses) are crucial components used in various industries for capturing and focusing infrared radiation. They play a vital role in enabling the detection and analysis of thermal energy emitted by objects. In this article, we will explore the features of IR lenses and their applications in medical instrumentation, life sciences, surveillance, and security and defense. IR lenses are designed to operate in different regions of the infrared spectrum, including short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). They are typically made from specialized materials such as germanium, zinc selenide, and chalcogenide glasses that are transparent to infrared radiation. Infrared Lenses Medical Instrumentation: In the field of medical instrumentation, infrared lenses find extensive use in thermal imaging and non-invasive diagnostics. They enable the detection of abnormal temperature patterns, aiding in the identification of diseases and injuries. Infrared thermal cameras equipped with MWIR or LWIR lenses can detect temperature variations on the skin’s surface, helping diagnose conditions such as inflammation, circulatory problems, and cancerous growth. Additionally, infrared lenses are utilized in endoscopic devices for minimally invasive procedures, enabling visualization and precise targeting of internal body parts. Life Sciences: IR lenses play a significant role in life sciences, particularly in infrared NIR spectroscopy and imaging applications. Infrared spectroscopy involves analyzing the interaction between infrared light and molecules, providing valuable information about their composition and structure. NIR spectroscopy, which operates in the near-infrared (NIR) region, is widely used for chemical analysis, pharmaceutical research, and food quality control. Infrared lenses enable the accurate focusing of NIR light onto samples and detectors, facilitating precise measurements and analysis. Surveillance: In the field of surveillance, IR lenses are utilized for night vision and thermal imaging. SWIR lenses enable enhanced visibility in low-light conditions by detecting light in the 0.9-1.7μm range. This allows for surveillance in complete darkness, making them ideal for military operations, law enforcement, and security applications. LWIR lenses, on the other hand, are employed in thermal cameras, which capture and analyze the heat emitted by objects. This capability is invaluable for perimeter security, detecting intruders, and monitoring critical infrastructure. Security and Defense: IR lenses have extensive applications in security and defense systems. MWIR and LWIR lenses are crucial components in infrared cameras used for long-range surveillance, target acquisition, and tracking. These lenses enable high-performance thermal imaging, allowing military personnel to detect and identify potential threats, even in challenging environments such as smoke, fog, and darkness. Additionally, SWIR imaging with infrared lenses aids in target recognition and identification by exploiting the reflected SWIR light from objects. InGaAs sensors are commonly used in conjunction with infrared lenses for imaging and detection in the SWIR region. They offer high quantum efficiency and sensitivity, making them suitable for low-light conditions. Infrared lenses facilitate the precise focusing of SWIR light onto InGaAs detectors, enabling clear and detailed imaging. Infrared Lenses in Diverse Applications In summary, IR lenses are essential components in various industries. They enable the capture, focusing, and analysis of infrared radiation in the SWIR, MWIR, and LWIR regions. Their applications span medical instrumentation, life sciences, surveillance, and security and defense. Infrared lenses play a crucial role in thermal imaging, night vision, spectroscopy, target recognition, and other critical functions, contributing to advancements in research, diagnostics, and security technologies. Please contact us if you’d like to schedule a free consultation or request for quote on your next project. RELATED CONTENT:
Learn how Optical Coherence Tomography (OCT) revolutionizes medical imaging. Benefit from precise, real-time, non-invasive tissue imaging.
Design for Manufacturing (DFM) Case Study: Objective Lens Design for Trapping and Imaging Single Atoms At Avantier we offer Design for Manufacturing (DFM services), optimizing product design with our extensive knowledge of manufacturing constraints, costs, and methods. Avantier Inc. received a request from a University Physics department to custom design a long working distance, high numerical aperture objective. Our highly skilled and knowledgeable engineers designed and deployed state-of-the-art technologies to develop a single-atom trapping and imaging system where multiple laser beams are collimated at various angles and overlapped on the dichroic mirrors before entering the objective lens. The objective lens focuses the input laser beams to create optical tweezers arrays to simultaneously trap single atoms and image the trapped atoms over the full field of view of the microscope objective. The objective lens not only had high transmission but also can render the same point-spread function or diffractive-limited performance for all traps over the full field of view. Typical requirements for the objective lens used for trapping and imaging single atoms: Custom objective lens example Objective lens focuses high-power laser beams to create optical tweezers at 6 wavelengths (i.e., 420nm, 795nm, 813nm, 840nm, 1013nm, and 1064nm) and image the trapped atoms at the wavelength of 780nm.
At Avantier, we are our proud of our track history in assisting customers to solve problems using reverse optical engineering. Here are three case studies. Case Study 1: Reverse Engineering an OFS 20x APO Objective Lens for Bioresearch Genetic engineering requires using precision optics to view and edit the genomes of plants or animals. One world renowned bio research lab has pioneered a new method to speed plant domestication by means of genome editing. While ordinary plant domestication typically requires decades of hard work to produce bigger and better fruit, their methods speed up the process through careful editing of the plants’ genome. To accomplish this editing, the bio research lab used a high end OFS 20x Mitutoyo APO SL infinity corrected objective lens. The objective lens performed as desired, but there was just one problem. The high energy continuous wave (CW) laser waves involved in the project would damage the sensitive optical lens, causing the objective lens to fail. This became a recurrent problem, and the lab found itself constantly replacing the very expensive objective. It wasn’t long before the cost became untenable. We were approached with the details of this problem and asked if we could design a microscope objective lens with the same long working distance and high numerical aperture performance of the OFS 20x Mitutoyo but with better resistance to laser damage. The problem was a complex one, but after years of intensive study and focused effort we succeeded in reverse engineering the objective lens and improving the design with a protective coating. The new objective lens was produced and integrated into the bio research lab’s system. More than three years later, it continues to be used in close proximity to laser beams without any hint of failure or compromised imaging. Case Study 2: Reverse Engineering an OTS 10x Objective Lens for Biomedical Research Fluoresce microscopy is used by a biomedical research company to study embryo cells in a hot, humid incubator. This company used an OTS Olympic microscope objective lens to view the incubator environment up close and determine the presence, health, and signals of labeled cells, but the objective was failing over time. Constant exposure to temperatures above 37 C and humidity of 70% was causing fungal spores to grow in the research environment and on the microscope objective. These fungal spores, after settling on the cover glass, developed into living organisms that digested the oils and lens coatings. Hydrofluoric acid, produced by the fungi as a waste product, slowly destroyed the lens coating and etched the glass. The Olympus OTS 10x lens cost several thousand dollars, and this research company soon realized that regular replacement due to fungal growth would cost them far more than they were willing to pay. They approached us to ask if we would reverse engineer an objective that performed in a manner equivalent to the objective they were using, but with a resistance to fungal growth that the original objective did not have. Our optical and coating engineers worked hard on this problem, and succeeded in producing an equivalent microscope objective with a special protective coating. This microscope lens can be used in humid, warm environments for a long period of time without the damage the Olympus objective sustained. Case Study 3: Reverse Engineering a High Precision Projection Lens A producer of consumer electronics was designing a home planetarium projector, and found themselves in need of a high precision projection lens that could project an enhanced image. Nothing on the market seemed to suit, and they approached us to ask if we would reverse engineer a high quality lens that exactly fit their needs but is now obsolete. We were able to study the lens and create our own design for a projector lens with outstanding performance. Not only did this lens exceed our customer’s expectations, it was also affordable to produce and suitable for high volume production.
Design for Manufacturing (DFM) Case Study: Infrared Lens Design for Scientific Equipment At Avantier we offer Design for Manufacturing (DFM services), optimizing product design with our extensive knowledge of manufacturing constraints, costs, and methods. Measuring the relative concentrations of carbon monoxide, products of combustion and unburned hydrocarbons is the basis of flare monitoring and is typically accomplished with infrared spectral imaging. For real time continuous monitoring, a multispectral infrared imager can be used. We were approached by a scientific equipment supplier for DFM help on a particular infrared lens (50 mm f/1) that is used in their infrared imager. The lens was designed to offer the high image quality and low distortion needed for scientific research, but though it performed as desired, there were two major manufacturing problems that made it expensive to produce. The first issue was expensive aspheric lens elements. The second was the inclusion of GaAs to improve the modulation transfer function (MTF) and to correct chromatic aberration. GaAs is a highly toxic material, and incorporating it in the design complicates the manufacturing process and increases the cost. Taking into account both lens performance and our client’s manufacturing budget, Avantier redesigned the infrared lens with DFM principles. Our final design included no aspheric lens elements and no hazardous material, but we met all requirements for distortion, MTF, and image height offset at the working spectral lens. Using a combination of 5 spherical lens elements and 1 filter, our 50 mm f/1 lens was able to reduce the lens cost by about 60%. In the below image the configuration of the 50 mm f/1 lens is shown. For a wavelength range of approximately 3 to 5 µm the MTF was 0.7, well within our client’s requirements. The next image below shows the modulation transfer function (MTF) plots for the redesigned lens. This last image below shows the lens distortion plot. The maximum field was 6.700 degrees, and the maximum f-tan distortion 0.6526%. Whatever your need might be, our engineers are ready to put their design for manufacturing experience to work for you. Call us to schedule a free initial consultation or discuss manufacturing possibilities.