Infrared Lens Advancements for Advanced Imaging

Key Takeaways Infrared camera lenses, crucial for thermal imaging, optimize performance based on focal length and the specific infrared lens wavelength range. Lenses are made from infrared-transparent materials like germanium, silicon, and zinc selenide, providing unique optical properties. Focal length is critical; longer lengths enhance long-range detection, while shorter lengths offer a wider field of […]

Read more
What Are Optical Beam Splitters?
types of beam splitters, light beam, beamsplitter, beam splitter coating

Key Takeaways Beam splitters, essential for applications such as teleprompters and holograms, have different types that play a vital role in splitting light beams, while beam splitter coatings enhance optical surface properties, minimizing power loss and prolonging equipment lifespan. Common types include cube and plate beam splitters, polarized and non-polarized variants, and dichroic beam splitters. […]

Read more
Optical System Design: Challenges and Advantages

Key Takeaways Optical systems designed with meticulous attention to field of view parameters. Analysis tools utilized to ensure optimal field of view performance. Optimization techniques employed to meet specified field of view requirements effectively. Maximizing Optical System Performance with Zemax At Avantier, we use Zemax for designing, analyzing, and optimizing optical systems, such as lenses, […]

Read more
Introduction to Reverse Engineering

Key Takeaways Specializing in custom optics, Avantier employs Reverse Optical Engineering (Reverse Engineering) and advanced Manufacturing Capabilities. Non-destructive testing captures precise measurements of test samples. Processed data transforms into high-quality CAD models for analysis and optimization. Strict quality control ensures the accurate replication of components with a focus on meeting specific requirements. Advantages of Reverse […]

Read more
Infrared Lenses: Features and Applications

Key Takeaways Infrared lenses (IR lenses), through opto-mechanical design, align components for high-performance optics and IR applications. IR lenses capture and focus radiation in various spectra. Used in medical, scientific, surveillance, and defense fields, they enable thermal imaging and spectroscopy, driving technological progress.  Opto-Mechanical Design for High-Performance Optics In order to ensure the seamless functioning […]

Read more
Optical Filters: Longpass to Notch Spectrum

Key Takeaways Optical filters like Longpass, Shortpass, Bandpass, Multi-bandpass, Notch, and Neutral Density are essential for controlling wavelength ranges in diverse applications. The electromagnetic spectrum comprises Gamma rays, X rays, UV, visible light, IR, and radio waves. Human eyes perceive colors in visible light (380-780nm), while optical filters play a vital role in manipulating light […]

Read more
Objective Lenses: A Guide to Aberration Correction

Key Takeaways Type of microscope objective lenses, such as Achromatic and Plan Apochromatic, are vital for imaging and address specific aberration correction needs. Corrections for cover glass thickness and working wavelengths are vital for optimal performance. Balancing magnification and resolution, alongside factors like working distance, ensures detailed observations. Critical Role of Objective Lenses in Microscopy […]

Read more
Understanding Field of View (FOV) and Angular Field of View (AFOV) in Camera Lenses

Key Takeaways Field of View (FOV) in a camera lens, influenced by focal length and sensor size, captures the scene. Angular Field of View (AFOV), measured in degrees or length, is determined through optical tests. Shorter focal lengths intensify light convergence, affecting Angular FOV. Exploring the Field of View (FOV) in Camera Lenses The camera […]

Read more