Case Study: 25X Objective Lens in Mass Spectrometry
Case Study: 25X Objective Lens in Mass Spectrometry

Key Takeaways The 25X objective lens in mass spectrometers ensures high resolution and excellent imaging quality in both high and low temperature conditions, significantly benefiting materials science research. Its enhanced magnification allows precise observation and analysis, crucial for fields like earth science, environmental science, and metallurgy. The lens’s advanced design reduces production costs while maintaining superior performance, making it highly competitive in the market. Optimized for extreme environments, the lens meets stringent adhesion and sealing standards, ensuring long-term stability and reliability in various scientific applications. Versatile Applications and Impact of the 25X Objective Lens The 25X objective lens is used in Isotope Ratio Mass Spectrometer (IRMS) systems and significantly impact diverse fields such as earth science, environmental science, metallurgy, semiconductors, and materials science. Its enhanced magnification enables more precise observation and analysis of microscopic samples, offering researchers extensive opportunities for detailed exploration. This 25x objective lens is used in a lot of domains, underscoring its importance in refining resolution, in accurate detection, and in the advancement of the comprehension of material properties. This lens proves to be indispensable in contributing to both scientific research and technological progress. Project Overview This custom designed 25X objective lens, used for the mass spectrometer system, is well-suited for instruments dedicated to the research of the separation and detection of various isotopes. Operating on the principle of charged particles being deflected in an electromagnetic field, the lens facilitates the separation and detection of substances based on differences in the mass of material atoms, molecules, or molecular fragments. This capability enables a detailed analysis of the composition of substances, which contribute to advancements in understanding the mass spectrometer of different isotopes. Polychromatic Diffraction MTF Ensuring high resolution in both high and low temperature environments Ensuring high resolution in both high and low temperature environments is crucial for this project, especially with special requirements for adhesion and for the bonding process, directly impacting the sealing and dust-free within the objective lens. This imposes stringent requirements on our equipment. In high temperature environments, materials must resist heat expansion and maintain structural integrity. Advanced cooling systems and thermal insulation are typically employed to stabilize the equipment. In low temperature environments, the prevention of freezing of instrument components and the ensuring of consistent performance are paramount. Material insulation and effective temperature control mechanisms are utilized to prevent temperature induced deformations. The entire adhesion and sealing process adheres to high standards to ensure stable equipment operation in extreme temperature conditions. Adhesive Selection: Selecting suitable adhesives is critical for high and low temperature environments. In high temperatures, adhesives need excellent heat resistance, resistance to expansion, and minimal decomposition. In low temperatures, adhesives should possess good flexibility and resistance to becoming brittle, ensuring adhesion is maintained even in extremely cold conditions. Bonding Process: The bonding process requires precise control to ensure uniform adhesive application and reliable sealing. In high temperature environments, attention must be given to adhesive flow characteristics and curing time to prevent uneven application or loss during the process. In low temperature environments, it’s essential to ensure that adhesive coating and adhesion properties are not affected by temperature variations. Sealing Integrity: Sealing integrity during the bonding process is crucial, especially in high and low temperature conditions. Sealing not only affects equipment performance but also prevents external particles and dust from entering the system, ensuring long-term stability. Dust-Free Requirements: The bonding process needs to be conducted in a dust-free environment to prevent dust and particles from entering the adhesive coating, affecting the sealing effectiveness. This may require work to be conducted in a clean or similar environment, so there is the need to  implement appropriate measures to ensure workplace cleanliness. Lens Performance Through our meticulously optimized design, our product exhibits significant advantages over objective lenses from word leading companies. Firstly, we have successfully reduced production costs, enhancing the competitiveness of our lenses in the market. By employing intelligent design processes and efficient manufacturing technologies, we have streamlined production costs, providing customers with a more cost-effective choice. Secondly, we focus on elevating imaging quality by optimizing optical configurations and by utilizing high-quality lens materials. Our lenses deliver clearer and more authentic image reproduction, which enhancs users’ observational experiences and practicality in the fields of materials science and molecular research. High Resolution: Avantier employs advanced technological approaches, utilizing precise manufacturing processes and optimized optical components to achieve higher resolution levels. This ensures our lenses can accurately depict microscopic structures and details, offering a reliable tool for materials science and molecular research. Manufacturing Processes: Avantier has further optimized product assembly processes, particularly in specialized sealing, adhesive application, and meeting high dust-free requirements. This results in our company’s products boasting higher resolution, a larger field of view, and an extended working distance in both high and low temperature environments, thus catering to the demanding needs of materials science and molecular research. Conclusion The 25X objective lens significantly enhances mass spectrometer applications in earth science, environmental science, metallurgy, semiconductors, and materials science. With an optimized design, it ensures high resolution in diverse temperatures while meeting stringent adhesion and sealing standards. Outperforming competitors, our lens not only reduces costs but also elevates imaging quality, so it excels in materials science and molecular research. Its indispensable role makes it a valuable asset for scientific advancements. Additionally, the incorporation of features like a large NA(numerical aperture), a long working distance, a high resolution, and a wider FOV(field of view) enhances the lens’s overall performance in meeting the demands of modern research and technology. Related Content

Read more
Image Recovery or Image Reconstruction of an Imaging System

Blurring is a significant source of image degradation in an imperfect imaging system. The optical system’s point spread function (PSF) describes the measure of blur in a given imaging system and is often used in image reconstruction or image recovery algorithms. Below in example of using inverse PSF to eliminate the barcode image degradation. Barcodes are found on many everyday consumer products. A typical 1-D (one-dimensional) barcode is a series of varying width vertical lines (called bars) and spaces. The example of the popular GS1-128 Symbology barcode is shown here: The signal amplitude of code image only has changes in horizontal direction (i.e. X-direction).  For the imaging system used to capture and decode the barcode it is sufficient to look at one-dimensional intensity profile along the X-direction. In good conditions the profile may look like this: Using such a good scan, it is trivial to recover initial binary (only Black and only White) barcode. One can set threshold in the middle between maxima and minima of the received signal, and assign whatever is above the threshold to White, and below the threshold to Black. However, in situations when the Point Spread Function (PSF) of the imaging system is poor, it may be difficult or impossible to set the proper threshold.  See example below: PSF is the impulse response of an imaging system, it contains information of the image formation, systematic aberrations and imperfections. To correctly decode barcode in such situations one may try to use inverse PSF information to improve the received signal. The idea is to deduce inverse PSF from the multiple signals obtained from the many scans of different barcodes of the same symbology. All barcodes of the same Symbology, such as GS1-128, have the same common features defined by the Symbology standards. This permits us to calculate inverse PSF coefficients by minimizing deviation of the received signals from the ideal barcode profile signals. A small number, such as 15, of the inverse PSF coefficients may be used to correct the received signals to make them as close to barcode signals as possible in the Least Squares sense. The inverse PSF coefficients were found and used to convert poor received signal shown previously into better signal shown on the next picture by red: While the recovered red signal is not ideal, it does permit to set threshold and correctly recover the scanned barcode.

Read more
How to Read an Optical Drawing

An optical drawing is a detailed plan that allows us to manufacture optical components according to a design and given specifications. When optical designers and engineers come up with a design, they condense it in an optical drawing that can be understood by manufacturers anywhere.  ISO 10110 is the most popular standard for optical drawing. It describes all optical parts in terms of tolerance and geometric dimension. The image below shows the standard format of an optical drawing. Notice thee main fields. The upper third, shown here in blue, is called the drawing field. Under this the green area is known as the table field, and below this the title field or, alternately, the title block (shown here in yellow). Once an optical drawing is completed, it will look something like this: Notice the three fields— the drawing field, the table field, and the title field. We’ll look at each of them in turn. Field I — Drawing Field The drawing field contains a sketch or schematic of the optical component or assembly. In the drawing here, we see key information on surface texture, lens thickness, and lens diameter. P3 means level 3 polished, and describes the surface texture. Surface texture tells us how close to a perfectly flat ideal plane our surface is, and how extensive are the deviations. 63 refers to the lens diameter, the physical measurement of the diameter of the front-most part of the lens 12 refers to the lens thickness, the distance along the optical axis between the two surfaces of the lens After reviewing the drawing field we know this is a polished bi-convex lens, and we know exactly how large and how thick it is. But there is more we need to know before we begin production. To find this additional information, we look at the table field. Field 2— Table Field In our example, the optical component has two optical surfaces, and table field is broken into three subfields. The left subfield refers to the specifications of the left surface, and the right subfield refers to the specifications of the right surface. The middle field refers to the specifications of the material. Surface Specifications: Sometimes designers will indicate “CC” or “CX” after radius of curvature, CC means concave, CX means convex. Material Specifications: 1/ : Bubbles and Inclusions Usually written as 1/AxB where A is the number of allowed bubbles or inclusions in lens B is the length of side of a square in units of mm 2/ : Homogeneity and Striae Usually written as 2/A;B where A is the class number for homogeneity B is the class for striae Field 3: Title Field The last field on an optical drawing is called the title field, and it is here that all the bookkeeping happens. The author of the drawing, the date it was drawn, and the project title will be listed here, along with applicable standards. Often there will also be room for an approval, for a revision count, and for the project company. A final crucial piece of information is the scale: is the drawing done in 1:1, or some other scale? Now you know how to read an optical drawing and where to find the information you’re looking for. If you have any other questions, feel free to contact us!

Read more